Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 357(4): e2300569, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38251938

ABSTRACT

Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.


Subject(s)
Bee Venoms , Neoplasms , Humans , Melitten/pharmacology , Melitten/chemistry , Melitten/metabolism , Structure-Activity Relationship , Bee Venoms/pharmacology , Bee Venoms/therapeutic use , Neoplasms/drug therapy , Peptides/chemistry
2.
Iran J Pharm Res ; 21(1): e123791, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35765508

ABSTRACT

Ecarin is a metalloproteinase found in snake venom (SVMP) with an important role in coagulation and control of hemostasis. It can specifically produce active-thrombin from prethrombin-2 and does not differentiate between normal and abnormal prothrombin. It is used in diagnostic tests and to evaluate the treatment process of many diseases. There are many drawbacks associated with separating these compounds from snake venom. Therefore, in this study, full-length recombinant Ecarin (r-Ecarin) was cloned, expressed, and purified in eukaryotic host cells. To determine the most effective form of the enzyme, r-Ecarin was compared with the recombinant truncated form, which has only the metalloprotease domain of the protein (r-Ecamet) in terms of function and expression. Briefly, A DNA construct composed of sequence-encoding Ecarin was designed and cloned into pCAGGS expression vector and, subsequently, expressed in Chinese Hamster Ovary (CHO) cells. To identify the enzymatic activity of expressed protein, a bioactivity assay was performed. Blood coagulation time and expression levels of r-Ecarin and r-Ecamet proteins were compared. Also, a histopathological assessment was carried out on the liver of mice treated with these proteins. Comparison of r-Ecarin and r-Ecamet expression pattern demonstrated that full-length Ecarin expression has at least 2-fold higher expression in eukaryotic cells. Determination of r-Ecarin function proved that this protein is capable of prothrombin cleavage and producing thrombin. Comparison of PT test results between the r-Ecarin and r-Ecamet showed that there is a significant difference in the activity of the two enzymes and the full-length protein coagulates the blood in less time.

3.
J Med Chem ; 65(1): 2-36, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34919379

ABSTRACT

Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.


Subject(s)
Drug Delivery Systems , Nanostructures/administration & dosage , Nanotechnology/methods , Preventive Medicine , Animals , Humans , Nanostructures/chemistry , Xanthophylls/administration & dosage , Xanthophylls/chemistry
4.
J Med Signals Sens ; 4(4): 237-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25426427

ABSTRACT

The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications.

5.
Mol Biol Rep ; 40(2): 1341-50, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23076530

ABSTRACT

1-aminocyclopropane-1-carboxylic acid oxidase (ACO) enzyme is a member of the Fe II-dependent family of oxidases/oxygenases which require Fe(2+) as a cofactor, ascorbate as a cosubstrate and CO(2) as an activator. This enzyme catalyses the terminal step in the plant signaling of ethylene biosynthetic pathway. A 948 bp fragment of the ACO1 gene cDNA sequence was cloned from tomato (Lycopersicon esculentum) fruit tissues by using reverse transcriptase-polymerase chain reaction (RT-PCR) with two PCR primers designed according to the sequence of a tomato cDNA clone (X58273). The BLAST search showed a high level of similarity (77-98 %) between ACO1 and ACO genes of other plants. The calculated molecular mass and predicted isoelectric point of LeACO1 were 35.8 kDa and 5.13, respectively. The three-dimensional structure studies illustrated that the LeACO1 protein folds into a compact jelly-roll motif comprised of 8 α-helices, 12 ß-strands and several long loops. The cosubstrate was located in a cofactor-binding pocket referred to as a 2-His-1-carboxylate facial triad. Semi-quantitative RT-PCR analysis of gene expression revealed that the LeACO1 was expressed in fruit tissues at different ripening stages.


Subject(s)
Amino Acid Oxidoreductases/genetics , Ethylenes/biosynthesis , Fruit/enzymology , Plant Proteins/genetics , Solanum lycopersicum/enzymology , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Amino Acid Sequence , Base Sequence , Biosynthetic Pathways , Catalytic Domain , Fruit/genetics , Fruit/growth & development , Gene Expression , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Models, Molecular , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Structure, Secondary , Sequence Analysis, DNA , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...